翻訳と辞書
Words near each other
・ Absolution Gap
・ Absolution of the dead
・ Absolution Tour
・ Absolutism
・ Absolutive case
・ Absoluuttinen Nollapiste
・ Absolwent
・ Abson
・ Absonemobius
・ Absor Fauzi
・ Absorbable gelatin sponge
・ Absorbance
・ Absorbed dose
・ Absorbent Ink
・ Absorber (album)
Absorbing element
・ Absorbing Man
・ Absorbing Markov chain
・ Absorbing set
・ Absorbing set (random dynamical systems)
・ Absorbing the Disarray
・ Absorptance
・ Absorption
・ Absorption (acoustics)
・ Absorption (chemistry)
・ Absorption (economics)
・ Absorption (electromagnetic radiation)
・ Absorption (logic)
・ Absorption (pharmacokinetics)
・ Absorption (psychology)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Absorbing element : ウィキペディア英語版
Absorbing element
In mathematics, an absorbing element is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero element〔J.M. Howie, p. 2-3〕〔M. Kilp, U. Knauer, A.V. Mikhalev p. 14-15〕 because there is no risk of confusion with other notions of zero. In this article the two notions are synonymous. An absorbing element may also be called an annihilating element.
== Definition ==
Formally, let (''S'', ∘) be a set ''S'' with a closed binary operation ∘ on it (known as a magma). A zero element is an element ''z'' such that for all ''s'' in ''S'', ''z''∘''s''=''s''∘''z''=''z''. A refinement〔 are the notions of left zero, where one requires only that ''z''∘''s''=''z'', and right zero, where ''s''∘''z''=''z''.
Absorbing elements are particularly interesting for semigroups, especially the multiplicative semigroup of a semiring. In the case of a semiring with 0, the definition of an absorbing element is sometimes relaxed so that it is not required to absorb 0; otherwise, 0 would be the only absorbing element.〔J.S. Golan p. 67〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Absorbing element」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.